The Use of Individual Patient Data in Systematic Reviews

Lesley, Stewart¹, Mike Clarke², Jayne Tierney¹

(Cochrane MWG on IPD meta-analyses)

¹MRC Clinical Trials Unit, Cancer Division, Cambridge
²Clinical Trial Service Unit, Oxford

Statistics in Medicine 1995 14: 2057-2079
Types of Meta-analysis/Terminology

● **Systematic Review**
 - Exhaustive exploration, critical evaluation and synthesis of all the unbiased evidence

● **Meta-analysis**
 - Exhaustive exploration, critical evaluation and quantitative synthesis of all the unbiased evidence
 - Combination of the results of a number of related randomised trials
Types of Meta-analysis/Terminology

- Systematic Review
 - Meta-analysis (Overview)
 - Extract data from published reports
 - Collect summary data
 - Collect individual patient data (IPD)
What is an IPD Meta-analysis?

- Involves the central collection, checking and analysis of updated individual patient data
- Include all properly randomised trials, published and unpublished
- Include all patients in an intention-to-treat analysis
IPD Meta-analyses

- Have been described as the “yardstick” and “gold standard” of systematic reviews
- Why?

- Take longer and are more resource intensive than other forms of meta-analysis
- Why bother?
Why IPD?

- Analyses based on published aggregate data can give different answers to an IPD meta-analysis
 - *Chemotherapy in advanced ovarian cancer*
 - *Paternal cell immunotherapy in recurrent miscarriage*
 - *Ovarian ablation in breast cancer*
Reasons for the Differences

- Exclusion of trials
- Exclusion of patients
- Timepoint of analysis
- Length of follow-up
- Method of analysis
- Inadequate reporting
Benefits of IPD

- Carry out time-to-event analyses
- Only practical way to do subgroup analyses
- More flexible analysis of outcomes
- Carry out detailed data checking
- Ensure quality of randomisation and follow up
- Ensure appropriateness of analysis
- Update follow up information
Other Benefits

- More complete identification of trials
- Better compliance in providing missing data
- More balanced interpretation of results
- Wider endorsement and dissemination of results
- Better clarification of further research
- Collaboration on further research
IPD Meta-analysis
Practical Methodology
Methodology

- Include all randomised trials, published and unpublished
- Include only properly randomised trials
- Include all randomised patients in an intention-to-treat analysis
Key Principles

- All data sent to the secretariat will
 - be held securely and treated in the strictest confidence
 - not be used in any publication without the permission of the responsible trialist

- All published reports of the meta-analysis results will
 - be in the name of the Collaborative Group
 - be circulated to all members of the Group for comment and approval before publication
 - concentrate on the presentation rather than the interpretation of the results
Running an IPD Meta-analysis

- Ultimate aim is to obtain accurate, up to date data for all patients randomised in all relevant trials

- Most effort is required to establish and maintain collaboration and to process data

- Least problematic area might be the analysis itself
Resource Requirements

- **Time** 2-3 years
- **Expertise** Clinical
 - Scientific
 - Statistical
 - Data Management
 - Computing
 - Administrative
- **Money** ~ £1,000 per trial*
 - ~ £5-10 per patient*
 \{ excluding meeting costs \}
- **Staff** Full time staff
 (~ 80% of budget)

* very approximate estimates
Planning the Meta-analysis

- Time consuming
- Potential duplication of effort
- Register with the Cochrane Collaboration
Organisational Structure

- Secretariat comprises local staff and relevant experts
- Most decisions taken by local staff
- A larger Steering Group may be set up to advise the secretariat on strategic issues
- All participating trialists should be members of the collaborative group
Developing a Formal Protocol

● Formal protocol / written plan is indispensable

● Allows a meta-analysis to be designed with the same rigour as a randomised trial
 – specify rationale behind project
 – set out main aims and objectives
 – specify a priori hypotheses and methods

● Useful in clarifying issues, identifying potential problems and explaining the project to collaborators
Protocol Format

- Introduction/background
- Underlying biology
- Review of trials
- Meta-analysis of published data
- Formal specification of questions
- Inclusion/exclusion criteria
- Data to be collected
- General methods / Statistical methods
- Publication policy
- Suggested timetable
- List of trials
- Bibliography
Identifying Trials
Identifying Trials

- Utmost importance to identify and include as many relevant trials as possible

- If missing trials are numerous or unrepresentative, they could affect the meta-analysis results in an important way
Bias in the Exclusion of Trials

- English language bias
- Database bias
- Publication bias
- Bias in reporting of data
- Citation bias
- Multiple publication bias
Include Published and Unpublished Trials

- Considerable evidence that ‘positive’ trials are more likely to be published than ‘negative’ trials.

- Collecting the trial protocol and IPD allows the meta-analysis team to perform more extensive ‘peer review’.

- Publication of an apparently sound manuscript does not guarantee the quality of the data.
Identifying Trials

- Simple electronic literature search is likely to result in a sample of trials biased towards the positive

- Need to employ additional means of identifying trials
Means of Identifying Trials

- Computerised searches: CCTR, MEDLINE, EMBASE
- Hand searches
- Meeting abstracts
- Trial registers
- Pharmaceutical companies
- Word of mouth / Questionnaire
Identification of Trials

Meta-analysis of neoadjuvant chemotherapy for cervix cancer

- Medline/Cancerlit: 58%
- Hand Searching: 14%
- Word of Mouth: 14%
- Trial Registers: 14%
Publication Status of Eligible Trials

Meta-analysis of neoadjuvant chemotherapy for cervix cancer

- Published in full: 47%
- Published as abstract: 24%
- Unpublished: 24%
- Ongoing: 5%
Initiating Collaboration
Establishing & Maintaining Collaboration

- Initial letter inviting collaboration, but not yet asking for data, should explain
 - main aims and objectives
 - importance of the collaborative group
 - publication policy
 - collaborative group policy
 - confidentiality of data

- Ask specific questions relating to trial eligibility
- Ask for trial protocol
- Include meta-analysis protocol and reply forms
Contacting Trialists - Practical Problems

- **Old trials**
 - investigators moved/retired
 - cooperative groups disbanded
- **Contact 2nd, 3rd, 4th,.....authors**
- **Contact national institutions and follow-up agencies**
- **Geographical problems**
 - postal system in some countries notoriously bad
- **Use couriers**
Collecting Data
Deciding what Data to Collect

- Decision by secretariat or Steering Group
- Discussion with Collaborative Group
Data Collection

- **Absolute minimum**
 - *Patient identifier*
 - *Allocated intervention*
 - *Event*

- **Useful to collect additional variables for checking integrity of randomisation**
Data Collection

- Patient identifier
- Date of randomisation
- Allocated intervention
- Event
- Date of event
- Date of last follow-up
- Sex
- Date of birth
- Additional baseline variables
- Additional outcome variables
Data Collection

- Flexibility of format
 - Suggest coding
 - Accept whatever the trialist can send
 - Secretariat can reformat data

- Assistance
 - Supply data forms
 - Site visit
 - Financial ??

- Flexibility of data transfer methods
Transfer of Data

- Electronic mail
- Disk or tape
- Data forms
- Trialist’s own records
- Ftp
Methods of Transfer of Trial Data
Advanced Ovarian Cancer Overview
Methods of Transfer of Trial Data
Myeloma Overview

- Floppy disk: 39%
- Forms: 17%
- E-mail: 17%
- Other paper: 27%
Methods of Transfer of Trial Data
Soft Tissue Sarcoma Meta-analysis

- E-mail: 71%
- Floppy disk: 29%
- Forms / Other paper: 0%
Maintaining Contact with Trialists

- Regular correspondence
- Newsletters
- Status sheets
Checking the Data
Reasons for Data Checking

- Not to centrally police trials or to expose fraud
- Improve accuracy of data
- Improve follow-up
- Ensure intention-to-treat analysis
- Ensure all randomised patients are included
- Ensure no non-randomised patients are included
- Assess quality of trial
 - Integrity of randomisation procedure
 - Integrity of follow-up procedure
Checking Trial is Eligible

- Read trial protocol and check that it is consistent with eligibility criteria for the meta-analysis

- Ask about the method of randomisation to make sure trial that the trial is properly randomised
Check for missing data, excluded patients

- Compare data received with any publications
- If patient identifiers are sequential, look for missing values
- Compare numbers and types of patients in each arm and query any imbalances
Checking data received is ‘correct’

- Check data consistency
 - date randomised > date trial opened
 - date last seen > date randomised etc.
- Perform range checks and flag ‘outliers’ to be verified
- Check consistency across variables per patient
- Tabulate numbers of patients in each prognostic category and compare with any publications
Checking Data 3

- Check randomisation
 - Balance across baseline factors e.g. age, sex, stage, histology and performance status
 - Pattern of randomisation
Occasionally non-randomised patients may be included in a trial’s published analyses
 - e.g. non-randomised pilot phase

Exclude such patients from the meta-analysis
Check that information is up to date

- Seek the most recent follow up possible
- Check for imbalance in follow up across treatment arms
Verifying the Data

- Analyse each trial individually and produce survival curves
- Send tabulations, data listings and survival curves to trialist for verification
Quality Scoring

- IPD meta-analyses usually have a simple binary score
 - trial is included
 - trial is excluded
- Quality scoring systems largely relate to trial publications
- IPD allows for very detailed checking
- Aim is to ‘clean’ all data sets to be of high quality
Rejecting a Trial

- Consider the trial as a whole and all the checking procedures together
- Discuss problems in detail with trialists
- Most problems are due to error
- Fraud is rare
- If trial has to be excluded it should be mentioned briefly in the MA publication
Analysis
Analysis

- Use all randomised patients
- Intention-to-treat analysis
- ‘Up-to-date’ analysis
- Time-to-event analysis
Include All Randomised Patients

- Argument is the same as for individual trials
- Exclusion of some patients, but not others on an ad hoc basis, could introduce bias
- Specify in the protocol if any patients will be excluded from the analysis
 - Usually all patients should be included
- Exclude any non-randomised patients
Analyses

- Individual patient data used
- Analysis stratified by trial
- IPD does not mean that all patients are combined into a single mega trial
Survival Analysis

- **Published or Summary Data**
 - *Restricted to analysis at a fixed point in time, or to a series of fixed timepoints*

- **Individual Patient Data**
 - *Uses individual survival times to calculate expected number of events*
 - *Takes account of censoring*
 - *Useful when time-to-event is important*
 - *Produces survival curves*
Software for Analysis

- Carry out and combine results of log rank analyses
 - Standard statistical packages: BMDP, SAS
 - 'In-house' programs

- Produce plots and survival curves
 - Mainly ‘in-house’ programs
 - Customisations of propriety software

- Analyse IPD and display results as HR plot
 - CTU Cancer Division have developed an integrated package (SCHARP)
Subgroup Analyses

- May achieve sufficient power to allow the assessment of whether any effect of treatment is larger or smaller in any patient subgroup.
- But...
- Such analyses are still exploratory and should be interpreted cautiously.
- Should be a reasonable biological explanation for any observed interactions.
Subgroup Analysis: Example

Subgroup analysis based on the astrological birth sign of patients randomised in a trial of the treatment of myocardial infarction (ISIS trial 16,000 patients)

<table>
<thead>
<tr>
<th>Birth Sign</th>
<th>% reduction odds of death</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scorpio</td>
<td>45% ± 23</td>
<td>< 0.04</td>
</tr>
<tr>
<td>All others</td>
<td>12% ± 8</td>
<td>N.S.</td>
</tr>
<tr>
<td>Overall</td>
<td>15% ± 7</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

According to this analysis almost all treatment benefit was confined to Scorpios (adapted from Collins R et al 1987 Stats in Med 6: 245-250)
Subgroup Analyses

- Usual cautions apply
- Can aid clinical interpretation of the results
- Pre-specify, interpret cautiously, consider as hypothesis generating (depends on the strength of result)
- Look for consistency across trials and comparisons
- Use logrank test stratified by trial
 - (e.g. calculate O-E and V for males only in each trial, then combine in overall HR)
If IPD are not available

- Aggregate unpublished data
- Aggregate published data
 - Weighting?
- Which meta-analysis result to emphasise?
- Wait
Disseminating Results
Collaborators’ Meeting

- Meeting of collaborators is an integral part of MA
- Together with group publication makes the project collaborative
- Gives the trialists the first opportunity
 - to discuss the results
 - to challenge the analyses
 - to discuss the interpretation and implication of the results
- Sets a deadline to which secretariat and trialists have to work
- Incentive to collaborate
Role of Collaborators’ Meeting

- To present the results
- To discuss the methods, results and implications
- To discuss publication
- To decide what to do next
 - Further analysis
 - Additional projects
Format of Collaborators’ Meeting

- Held earlier to stimulate collaboration
- Held later to present near final results and discuss publication
- Structured but informal
- 50:50 presentation:discussion
• **Resources**
 - *Most IPD MAs have meetings*
 - *Most provide accommodation for trialists and some provide some travel funds*
 - *Cost ~ £100 per delegate without travel*
 ~ *£500 per delegate with travel*
Financial Aspects

- Provide all meals and accommodation
- Reimburse cheapest travel for trialists
- Raise sponsorship
Publishing Results

- IPD meta-analyses are collaborative projects
- Carried out on behalf of a collaborative group
 - Trialists
 - Secretariat/Steering Group
- Published on behalf of the group
 - AOCTG (BMJ 1992)
 - CABGSTC (Lancet 1994)
 - SMAC (Lancet 1997)
 - EBCTCG (Lancet 1998)